CSS Pure Mathematics 2025 Group 3
CSS Pure Mathematics Syllabus 2025
This article covers the CSS Pure Mathematics complete Syllabus 2025.
The syllabus of CSS Pure Mathematics consists of 2 parts of a collective 200 marks i.e.100 marks each.
The examination for CSS Pure Mathematics is the Group 2 exam for CSS candidates.
CSS Pure Mathematics Syllabus 2025
Paper-I
(100 Marks)
Section-A
Modern Algebra:
-
- Groups, subgroups, Languages Theorem, cyclic groups, normal sub groups, quotient groups, Fundamental theorem of homomorphism, Isomorphism theorems of groups, Inner automorphisms, Conjugate elements, conjugate subgroups, Commutator subgroups.
- Rings, Subrings, Integral domains, Quotient fields, Isomorphism theorems, Field extension and finite fields.
- Vector spaces, Linear independence, Bases, Dimension of a finitely generated space, Linear transformations, Matrices and their algebra, Reduction of matrices to their echelon form, Rank and nullity of a linear transformation
- Solution of a system of homogeneous and non-homogeneous linear equations, Properties of determinants, Cayley-Hamilton theorem, Eigenvalues and eigenvectors, Reduction to canonical forms, specially diagonalisation.
Section-B
Geometry:
-
- Conic sections in Cartesian coordinates, Plane polar coordinates and their use to represent the straight line and conic sections, (cartesian and spherical polar coordinates in three dimensions, The plane, the sphere, the ellipsoid, the paraboloid and the hyperboloid in Cartesian and spherical polar coordinates.
- Vector equations for Plane and for space-curves. The arc length. The osculating plane. The tangent, normal and binormal, Curvature and torsion, Serret-Frenet's formulae, Vector equations for surfaces, The first and second fundamental forms, Normal, principal, Gaussian and mean curvatures,
Paper-II
(100 Marks)
Section-A
Calculus and Real Analysis:
-
- Real Numbers, Limits, Continuity, Differentiability, Indefinite integration, Mean value theorems, Taylor's theorem, Indeterminate forms, Asymptotes. Curve tracing, Definite integrals, Functions of several variables, Partial derivatives. Maxima and minima Jacobians, Double and triple integration (techniques only). Applications of Beta and Gamma functions. Areas and Volumes. Riemann-Stieltjes integral, Improper integrals and their conditions of existences, Implicit function theorem, Absolute and conditional convergence of series of real terms, Rearrangement of series, Uniform convergence of series,
- Metric spaces, Open and closed spheres, Closure, Interior and Exterior of a set. Sequences in metric space, Cauchy sequence convergence of sequences, Examples, Complete metric spaces, Continuity in metric spaces, Properties of continuous functions,
Section-B
Complex Analysis:
-
- Function of a complex variable: Demoiver's theorem and its applications, Analytic functions, Cauchy's theorem, Cauchy's integral formula, Taylor's and Laurent's series, Singularities, Cauchy residue theorem and contour integration, Fourier series and Fourier transforms, Analytic continuation.
This is the complete syllabus for preparation of CSS Pure Mathematics.
The Candidates should prepare thoroughly to succeed in the examination.
Therefore, here are a few suggested books you can buy for better learning about CSS Pure Mathematics from your favorite Multan Kitab Ghar online bookstore.
Suggested Reading Books for CSS Pure Mathematics 2025
- Advanced Calculus by Kaplan, W.
- Analytical Function Theory Vol. I by Hille, E.
- An Introduction to Differential Geometry by Wilmore, T.S.
- Complex Analysis by Goodstein, G.R.G.
- Calculus with Analytical Geometry by Yusuf, S.M.
- Differential Geometry of Three Dimensions by Weatherburn, C.E.
- Elements of Complex Analysis by Pennisi, L.L.
- Theory of Groups by Majeed, A.
- Mathematical Methods by Yusuf, S.M.
- Mathematical Analysis by Apostal, T.M.
- Principles of Mathematical Analysis by Rudin, W.
- The Theory of Groups by Macdonald, I.N.
- Topics in Algebra by Herstein, I.N.